Welcome to Desput_Blog~@~Desput_Blog~@~ Welcome to Desput_Blog~@~Desput_Blog~@~ Welcome to Desput_Blog~@~Desput_Blog~@~ Welcome to Desput_Blog~@~Desput_Blog~@~

Jumat, 20 Desember 2013

TOKOH ISLAM DALAM PERKEMBANGAN MATEMATIKA

Assalamu'alaikum.wr.wb

hai kawan-kawan semua, kalian tau ga kalo tokoh-tokoh Islam dalam perkembangan matematika itu ternyata banyak loh ...
tapi kita jarang tau tentang tokoh-tokoh Islam dalam perkembangan matematika ...
nah, kali ini saya mau posting tentang beberapa tokoh Islam dalam perkembangan matematika. ..

monggo disimak ... ^.^





      1. Al-Hajjaj bin Yusuf bin Matar (786-833 M)
Al-Hajjaj bin Yusuf bin Matar adalah seorang matematikawan Arab yang pertama kali menerjemahkan Elemen Euclid dari bahasa Yunani ke dalam bahasa Arab. Dia membuat terjemahan yang lebih ringkas untuk khalifah al-Maʾmun (813-833). Sekitar 829, ia menerjemahkan Ptolemeus Almagest, yang pada waktu itu juga telah diterjemahkan oleh Hunayn ibn Ishaq dan Sahl al-Tabari. Kita tahu apa-apa tentang kehidupan pribadi Hajjaj's, keluarganya, teman-temannya, atau pelatihannya (gurunya); kita tahu bahwa dia adalah salah satu penerjemah yang paling berpengaruh pada akhir abad ke-8 awal abad ke-9 di Baghdad, ibukota dari Kekaisaran Abbasiyah.Hajjaj menterjemahkan Ptolemy Megale sintaks yang dikenal sebagai Almagest dan Euclid's Elements.
Pada awal abad ke-9, ia menerjemahkan Elements, naskah yang berbahasa Yunani, ke dalam bahasa Arab untuk Yahya bin Khalid (wafat: 805), Wazir Khalifah Harun Al-Rasyid. Namun pada tahun 820, Hajjaj merevisi terjemahannya dan membuatnya untuk Khalifah Abbasiyah yang berkuasa di Ma’mun. terjemahan versi baruya digambarkan lebih canggih dari terjemahan aslinya. Kapan dan untuk siapa ia menerjemahkan Almagest tidak diketahui. Dua naskah terjemahan Hajjaj tentang pekerjaan utama Ptolemeus masih ada sampai hari ini.
Terjemahan Hajjaj’s memiliki pengaruh yang besar pada masyarakat Arab, Persia, Ibrani dan Pelajar yang mempelajari buku Ptolemy dan Euclid. Hal ini dapat dideteksi dalam manu skrip yang mewakili tradisi besar kedua dalam transmisi Arab dalam Almagest dan Element dan turunannya kemudian dalam bahasa Latin dan Ibrani. 
Tradisi kedua dimulai oleh terjemahan Hunayn ibn Ishaq tentang Almagest dan Elemen ke dalam bahasa Arab dan dilanjutkan dengan edisi Thabit ibn qurra. Beberapa dari sepuluh manuskrip Almagest Arab hari ini masih ada. Manuskrip itu dipelajari di Andalusia (Spanyol), di Afrikautara, Timur Tengah, Asia Tengah, dan India.
Ulama penting seperti Abu Aliʿ Sina bin Aflah bin Jabir dan Nasir al Din al Tusi mengetahui dan bekerja dengan manuskrip dari kedua tradisi dan memberikan komentar, yang kritis kepada keduanya. Pada abad ke-12, Gerard dari Cremona menerjemahkan Almagest di Toledodari yang berbahasa Arab ke dalam bahasa Latin menggunakan naskah yang mewakili dua tradisi Arab. Buku I-IX dari terjemahan ini didasarkan pada karya Hajjaj kecuali untuk katalog bintang di buku VII.5-VIII.1, yang merupakan teks pencampuran dua tradisi Arab. Sisa tiga buku terjemahan Gerard berasal dari karya Hunayn Ibn Ishaq dan ibn Thabit qurra. Pada awal abad 12, Adelard of Bath versi al-Hajjaj tentang elemen Euclid diterjemahkan ke dalam bahasa Latin.

2.    Al-qalasadi

konstribusi Al-qalasadi dalam mengembangkan matematika sungguh sangat tak ternilai. Ia sang matematikus Muslim abad ke-15, kalau tanpa dia boleh jadi manusia tidak mengenai symbol-simbol ilmu hitung. Sejarah mencatat alqasadi merupakan salah seorang matematikus muslim yang berjasa mengenalkan symbol-simbol Aljabar. Symbol-simbol tersebut pertama kali dikembangkan pada abad 14 oleh ibnu al-banna kemudian pada abad 15 dikembangkan oleh al-Qasadi, al-Qasadi memperkenalkan symbol-simbol matematika dengan menggunakan karakter dari alphabet arab. Ia menggunakan wa yang berarti dan untuk penambahan(+), untuk pengurangan(-), al Qasadi menggunakan illa berate”kurang” sedangkan perkalian (X) ia menggunakan fi yang berarti “kali”. Symbol ala yang berarti bagi digunakan untuk pembagian (/).
Selain itu, al-Qalasadi juga menggunakan simbol j untuk melambangkan ''akar''.  Simbol sh digunakan untuk melambangkan sebuah variable (x).  Lalu, ia menggunakan simbol m) untuk melambangkan ''kuadrat'' (X2). Huruf k digunakan sebagai simbol ''pangkat tiga'' (x3). Sedangkan,  melambangkan persamaan (=).

Tanpa jasa al-Qalasadi, boleh jadi masyarakat modern tak akan mengenal simbol Aljabar yang sangat penting itu. Lalu, sebenarnya siapakah al-Qalasadi itu? Matematikus Muslim terkemuka itu bernama lengkap  Abu al-Hasan ibnu Ali al-Qala?adi. Ia terlahir pada 1412  di Bastah (sekarang, Baza), Andalusia yang kini dikenal sebagai Spanyol.
Menurut JJ O'Connor dan EF Robertson,  Andalusia berasal dari bahasa Arab, al-Andalus. Nama itu digunakan  umat Islam untuk menyebut seluruh wilayah Spanyol dan Portugal yang pernah dikuasai umat Muslim dari abad ke-8 M hingga abad ke-11. Wilayah tempat berdirinya Kekhalifahan Umayyah Spanyol itu, kemudian direbut kembali orang Kristen.
Andalusia, kata O'Connor,  hanya digunakan untuk menyebut kawasan yang tersisa di bawah kekuasaan Islam. Penaklukan Kristen terhadap wilayah Andalusia membutuhkan empat abad. Andalusia merupakan wilayah yang makmur pada abad ke-13 M. Di wilayah itu, terdapat Alhambra, istana yang indah dan benteng dari penguasa Granada.
Al-Qalasadi adalah seorang intelektual Muslim yang dibesarkan di Bastah. Masa kanak-kanaknya dilalui dengan sangat sulit. Pada masa itu, Kerajaan Kristen sering menyerang kota Bastah.  Meski hidup dalam situasi keamanan yang tak stabil, ia tak pernah melalaikan tugasnya untuk belajar dan menimba ilmu.
Ilmu hukum dan Alquran merupakan pelajaran pertama yang diperolehnya di tanah kelahiran. Setelah menginjak remaja, al-Qalasadi hijrah ke selatan, menjauhi zona perang menuju Granada. Di kota itu, ia melanjutkan studinya mempelajari ilmu filsafat, ilmu pengetahuan dan hukum Islam. Al-Qalasadi sering melakukan perjalanan ke negara-negara Islam. Secara khusus,  dia menghabiskan banyak waktunya di Afrika Utara. Dia hidup di negara-negara Islam yang memberikan dukungan kuat terhadap Andalusia baik secara politik maupun dengan bantuan militer dalam melakukan perlawanan terhadap serangan Kristen.
Dia menghabiskan waktu di Tlemcen (sekarang di barat laut Aljazair, dekat perbatasan Maroko). Di tempat itu,  ia belajar di bawah  bimbingan guru-gurunya untuk mempelajari aritmatika dan aplikasinya. Setelah itu,  dia hijrah ke Mesir untuk berguru  pada beberapa ulama terkemuka.
Al-Qalasadi  juga sempat menunaikan ibadah haji ke  Makkah dan kembali ke lagi Granada. Ketika kembali  ke Granada, keadaan wilayah tersebut semakin memburuk. Bagian yang tersisa dari wilayah Muslim terus diserang orang-orang Kristen Aragon dan Castile. Suasana itu tak menyurutkan tekadnya untuk tetap mengajarkan ilmu yang dikuasainya.
Dalam situasi genting pun, al-Qalasadi tetap mengajar dan menulis sderet karya yang sangat penting. Serangan tentara Kristen yang terus-menerus membuat kehidupannya di Granada, semakin sulit.  Wilayah kekuasaan Muslim di Granada habis pada 1492, ketika  Granada jatuh ke tangan orang Kristen.
Selama hidupnya, al-Qalasadi menulis beberapa buku mengenai aritmatika dan sebuah buku mengenai aljabar. Beberapa di antaranya berisi komentar-komentar terhadap karya Ibnu al-Banna yang bertajuk Talkhis Amal al-Hisab (Ringkasan dari Operasi Aritmatika). Ibnu al-merupakan matematikus Muslim yang hidup satu abad lebih awal dari al-Qalasadi.
Risalah utama al-Qalasadi adalah al-Tabsira fi'lm al-Hisab (Klarifikasi Ilmu Berhitung). Sayangnya, buku itu sulit dipelajari orang kebanyakan. Untuk mempelajarinya dibutukan ketajaman pikiran. Buku itu sangat dipengaruhi pemikiran Ibnu al-Banna. Meskipun al-Qalasadi sudah berusaha menyederhanakan tingkat kerumitan karya al-Banna.
Buku aritmatika  karya al-Qalasadi yang lebih sederhana, terbukti begitu populer dalam pengajaran aritmatika di Afrika Utara. Karya-karyanya itu digunakan selama lebih dari 100 tahun. Jejak intelektual  al-Qalasadi rupanya cukup dikenal  dan diketahui para sejarawan
Salah seorang penulis yang bernama J Samso Moya, mengatakan, para penulis menganalisis karya para ahli matematika dari Maghrib (Afrika Utara) seolah-olah mereka sepenuhnya tidak terpengaruh dari pendahulu mereka di Timur Islam.
Hal itu, kata Moya, mendorong mereka untuk menekankan pentingnya mengunakan simbol aljabar yang digunakan  Al-Qalasadi (1412-1486), tanpa memperhatikan usaha-usaha serupa sebelumnya baik di Timur maufut di Barat Islam. Para penulis di abad ke-19 percaya bahwa simbol-simbol aljabar pertama kali dikembangkan dalam Islam oleh ahli matematika Spanyol-Arab Ibn al-Banna dan Al-Qalasadi.
Kalangkaan simbol-simbol matematika di Italia, mungkin disebabkan ketidaktahuanilmuwan Italia seperti, Leonardo Fibonacci akan adanya karya-karya hebat para ahli matematika dari  Andalusia. Boleh jadi simbol-simbol Aljabar tersebut bukan penemuan al-Qalasadi, tetapi dia  memiliki kontribusi yang besar dalam mengenalkan simbol-simbol Aljabar tersebut kepada dunia. Simbol-simbol Aljabar tersebut telah digunakan di kekaisaran Muslim Timur, bahkan mungkin lebih awal dari itu.
Tradisi belajar di Andalusia sudah tampak sejak awal abad ke-9 M. Di wilayah kekuasaan kekhalifahan Umayyah itu, anak-anak para pangeran, pejabat atau orang yang terhormat harus belajar. Mereka belajar dari ajaran ilmiah menggunakan salinan terjemahan karya ilmiah Yunani dan India.
Lalu muncullah buku-buku pengajaran bahasa Arab pertama di Andalusia yang berasal dari  Baghdad, ibu kota Kekhalifahan Abbasiyah. Belajar bukan hanya hak kelompok elite semata.  Anak-anak para pedagang dan keluarga kerajaan mendapatkan buku-buku dari orang tuanya yang kaya.
Melihat keinginan yang besar untuk belajar, Khalifah akhirnya mendukung kegiatan-kegiatan ilmiah dengan membiayai pembentukan sebuah perpustakaan penting untuk menyediakan beraneka macam buku. Inisiatif Khalifah untuk memajukan pendidikan dengan membangun banyak perpustakaan akhirnya meningkatkan perkembangan kegiatan ilmiah di kota-kota utama Muslim Spanyol.
Beberapa kota yang pendidikan dan ekonominya maju pada masa itu antara lain: Cordoba, Toledo, Sevilla, Zaragoza dan Valencia. Selama sepertiga akhir abad ke-9 dan abad ke-10 M, kegiatan mengajar dan penelitian berkembang pesat terutama dalam bidang matematika.
Khalifah Umayyah dpada abad ke-10 dan Khalifah Abd ar-Rahman III ( 912-961) serta putranya al-Hakam II (961-976) sangat mendukung perkembangan dunia pendidikan dan ilmu pengetahuan. Maka bisa dikatakan bahwa Andalusia --  tempat kelahiran al-Qalasadi -- merupakan wilayah yang memiliki tradisi belajar dan penelitian.
Pada masa itu, berbagai macam karya astronomi maupun matematika banyak dilahirkan oleh para ilmuwan besar, termasuk al-Qalasadi. Selain itu, banyak juga ilmuwan yang lahir di Andalusia, termasuk Ibnu as-Samh dan al-Zahrawi, yang mendominasi kegiatan ilmiah paruh pertama abad ke-11 M,  serta menerbitkan banyak buku di Spanyol dan di Maroko.

  3. Al-ʿAbbas ibn Saʿid al-Jawhari

Al-Jawhari adalah seorang matematikawan yang bekerja di Rumah di Baghdad. Karyanya yang paling penting adalah Komentar tentang Elemen Euclid yang berisi hampir 50 proposisi tambahan dan bukti percobaan dalil paralel. Matematikawan Arab dan astronomi yang menulis tentang (325 - 250 SM) Euclid's Elements dan menjadi yang pertama untuk mencoba bukti dalil paralel. Lahir di Baghdad, al-Jawhari adalah anggota sebuah lembaga ulama yang didirikan oleh khalifah al-Ma'mun (sekitar 813-833). Dalam bukunya Commentary on Euclid's Elements, al-Jawhari menyajikan sekitar 50 dalil selain yang ditawarkan oleh Euclid, ia berusaha meskipun tidak berhasil untuk membuktikan postulat paralel. Sebagai seorang astronom, al-Jawhari melakukan observasi baik dari Baghdad dan Damaskus.
Kita tahu sedikit kehidupan al-Jawhari's kecuali bahwa ia dikaitkan dengan Rumah yang luar biasa, yang didirikan di Baghdad oleh Khalifah al-Ma'mun. dirumah kebijaksanaan itu pulalah matematikawan lain ditempatkan seperti al-Kindi, al- Khawarizmi, Hunayn ibn Ishaq, Thabit bin qurra dan Banu Musa.
 Al-Jawhari, dikenal dalam bidang geometri, melakukan observasi di Baghdad sekitar tahun 829-830 ketika bekerja untuk al-Ma'mun. Dia meninggalkan Baghdad sebelum kematian al-Ma'mun di 833, dalam penelitian/pengamatannya di Damaskus di 832-833. Pekerjaan utama oleh al-Jawhari tentang Komentar pada Elemen Euclid yang tertera dalam Index, sebuah karya disusun oleh penjual buku Ibnu an-Nadim ditahun 988. Komentar pada Euclid's Elements merupakan pekerjaan yang hampir sama dengan yang dijelaskan oleh Nasir al-din al-Tusi walaupun al-Tusi memberikan judul yang sedikit berbeda untuk pekerjaan al-Jawhari's.
Al-Tusi mengutip enam dari hampir lima puluh proposisi yang bersama-sama membentuk apa yang al-Jawhari yakini sebagai bukti postulat paralel. Ini berarti bahwa, sejauh kita menyadari, al-Jawhari adalah matematikawan Arab pertama yang mencoba membuktikan hal ini. Kenyataan bahwa bukti ini gagal kemudian dicatat oleh al-Tusi. Al-Jawhari's adalah "bukti" contoh dari upaya awal matematikawan Muslim untuk memahami konsep-konsep sulit dalam Elemen Euclid. Berggren, meninjau, menyatakan terkejut, bukan pada argumen menyesatkan al-Jawhari, tapi lebih kepada fakta bahwa mereka masih sedang berulang 400 tahun kemudian.

4. Abd al-Hamid ibn Turk

Abd al-Hamid ibn Turki (830), atau yang dikenal juga sebagaiʿ Abd al-Hamid bin Wase bin Turk Jili adalah Matematikawan muslim Turki pada abad kesembilan. Tidak banyak yang diketahui tentang biografinya. Dua catatan tentangnya, salah satu oleh Ibnu Nadim dan yang lain oleh al-Qifti tidak identik. Namun al-Qifi menyebutkan namanya sebagai Abd al-Hamid ibn Wase ibn Turk Jili. Jili berarti dari Gilan.
Dia menulis sebuah karya pada aljabar yang hanya terdiri dari bab "Kebutuhan Logika dalam Persamaan Campuran", pada solusi persamaan kuadrat, dan masih ada sampai saat ini. Dia menulis sebuah naskah berjudul Kebutuhan Logika dalam Persamaan Campuran, yang sangat mirip dengan karya al-Khwarzimi's “Al-Jabr” dan diumumkan pada sekitar waktu yang sama, atau bahkan mungkin lebih awal dari, Al-Jabr. Naskah ini memberikan demonstrasi geometrik persis sama seperti yang ditemukan di Al-Jabr, dan dalam satu kasus contoh yang sama seperti yang ditemukan di Al-Jabr, dan bahkan melampaui Al-Jabr, dengan memberikan bukti geometris bahwa jika determinan negatif maka persamaan kuadrat tidak ada solusi. Kesamaan antara dua karya telah menyebabkan beberapa sejarawan untuk menyimpulkan aljabar yang mungkin telah berkembang dengan baik pada saat al-Khawarizmi dan 'Abd al-Hamid.

5. Yaʿqub ibn Isḥaq al-Kindi 

 Al-Kindi atau Alkindus adalah seorang filsuf dan ilmuwan yang bekerja sebagai Rumah Kebijaksanaan di Baghdad di mana ia menulis banyak komentar tentang karya-karya Yunani. Kontribusi-nya untuk matematika mencakup banyak karya aritmatika dan geometri.
Abu Yusuf Yaʿqub ibn Isḥaq al-Ṣabbaḥal-Kindi yang lahir pada tahun 801 dan wafat pada tahun 873 M ini juga dikenal sampai ke Barat oleh versi nama Latinnya “Alkindus”. Alkindus dikenal di barat sebagai seorang polymath Arab Irak,  filsuf Islam, ilmuwan, peramal, ahli astronomi, kosmologi, kimia, ahli logika, matematikawan, musisi, dokter, ahli fisika, psikolog, dan meteorologi. Al-Kindi adalah yang pertama dari para filsuf Peripatetik Muslim, dan dikenal atas usahanya untuk memperkenalkan filsafatYunani dan Helenistik ke dunia Arab. Al-Kindi adalah seorang pelopor dalam kimia, kedokteran, teori musik, fisika, psikologi, filsafat ilmu, dan juga dikenal sebagai salah satu bapak kriptografi.
Al-Kindi adalah keturunan dari suku Kinda yang merupakan bangsa Arab terkenal suku asli dari Yaman. Ia dilahirkan dan dididik di Kufah, sebelum mengejar studi lanjut di Baghdad. Al-Kindi menjadi tokoh terkemuka di Rumah dan sejumlah khalifah Abbasiyah menunjuk dia untuk mengawasi penerjemahan teks ilmiah dan filsafat Yunani ke dalam bahasa Arab. Ini kontak dengan "filosofi orang dahulu" (sebagai filsafat Yunani danHelenistik yang sering disebut oleh para sarjana Muslim) memiliki efekmendalam pada pengembangan intelektual, dan membawanya untuk menulis risalah asli pada subyek mulai dari etika Islam dan metafisika untuk matematika dan farmakologi. Dalam matematika, al-Kindi memainkan peran penting dalam memperkenalkan angka Arab ke dunia Islam dan Kristen. Dia adalah seorang pelopor dalam pembacaan sandi dan kriptologi, dan metode baru dibuat dari memecahkan sandi, termasuk metode analisis frekuensi. Menggunakan keahlian matematika dan medis, ia mengembangkan skala untuk memungkinkan dokter untuk mengkuantifikasi potensi pengobatan mereka. Ia juga bereksperimen dengan terapi musik. Tema sentral yang mendasari tulisan-tulisan filosofis al-Kindi adalah kesesuaian antara filsafat dan ilmu-ilmu Islam ortodoks, terutama teologi. Banyak karya-karyanya mensinergikan subyek teologi yang bersangkutan, termasuk sifat Allah, jiwa, dan pengetahuan kenabian. Namun, meskipun peran penting yang dimainkan dalam membuat filsafat diakses oleh intelektual Muslim, output filosofisnya sendiri sebagian besar dibayangi oleh al-Farabi dan sangat sedikit dari teks itu tersedia untuk sarjana modern untuk dipelajari.
Al-Kindi menulis pada sejumlah subjek matematika penting lainnya, termasuk aritmatika, geometri, angka India, harmoni dari angka, garis dan perkalian dengan angka, jumlah relatif, proporsi pengukuran dan waktu, dan prosedur numerik dan kenselasi. Ia juga menulis empat jilid, Penggunaan angka India Ketab fi Isti'mal al-'Adad al-Hindi yang memberikan kontribusi besar terhadap difusi sistem penomoran India di Timur Tengah dan Barat. Dalam geometri, antara karya-karya lain, ia menulis tentang teori paralel. Juga berhubungan dengan geometri dia mengerjakan dua pekerjaan pada optik. Salah satu cara dimana ia memanfaatkan matematika sebagai filsuf adalah upaya untuk menyangkal keabadian dunia dengan menunjukkan bahwa sebenarnya tak terhingga adalah absurditas matematis dan absurditas yang logis.6.

6. Banu Musa

 Banu Musa terdiri dari tiga bersaudara yang bekerja di Rumah Kebijaksanaan di Baghdad. Risalah matematika paling terkenal mereka adalah Kitab dari Pengukuran pesawat dan Angka Bulat, yang dianggap masalah yang sama seperti Archimedes lakukan pada Pengukuran Lingkar, pada bola dan silinder. Mereka memberikan kontribusi individual juga. Yang tertua, Jaʿjauh Muhammad khusus dalam geometri dan astronomi. Dia menulis sebuah revisi kritis pada Apollonius 'Conics disebut Aktiva dari kitab conics. Ahmad khusus dalam mekanika dan menulis sebuah karya pada perangkat pneumatik disebut mekanika. Si bungsu al-Hasan khusus dalam geometri dan menulis karya pada.
 
cukup sekian dulu ya tentang tokoh Islam dalam perkembangan Matematikanya, nanti dilanjut lagi deh....
 
wassalamu'alaikum wr.wb